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Phase segregation in NaxCoO2 for large Na contents
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We have investigated a set of sodium cobaltates (NaxCoO2) samples with various sodium content

(0.67≤x≤0.75) using Nuclear Quadrupole Resonance (NQR). The four different stable phases and an in-

termediate one have been recognized. The NQR spectra of 59Co allowed us to clearly differentiate the pure

phase samples which could be easily distinguished from multi-phase samples. Moreover, we have found that

keeping samples at room temperature in contact with humid air leads to destruction of the phase purity and

loss of sodium content. The high sodium content sample evolves progressively into a mixture of the detected

stable phases until it reaches the x = 2/3 composition which appears to be the most stable phase in this part

of phase diagram.

Introduction. - The family of sodium layered

cobaltates NaxCoO2 (0 < x ≤ 1) has a rich phase dia-

gram [1], which includes most interesting scientific phe-

nomena present in condensed matter physics, such as

superconductivity [2], spin density wave [3], magnetic

frustration in a triangular lattice, coexistence of metal-

lic and magnetic properties, both Curie-Weiss and 2D

metal, etc [4]. Moreover, high ionic mobility and high

Seebeck coefficient [5, 6] allow to consider this com-

pound for potential thermoelectric applications [7, 8].

The concentration x of sodium ions and their or-

der/disorder in the Na plane play a fundamental role in

the physical properties of cobaltates. The Co ions are

in the large crystal field induced by their oxygen octa-

hedral environment, so the 3d levels are split and the

difference in energy between the lower t2g triplet and

upper eg doublet is ≈ 2 eV, thus only the t2g triplet

states are filled [1]. Therefore the electronic structure

of the Co ions is expected to correspond to low spin con-

figurations with total electron spin S=0 or S=1/2 with

charge states Co3+/Co4+, respectively.

In the present work we have studied the cobal-

tates NaxCoO2 at large sodium content x range

(0.67≤x≤0.75). This concentration range bears our

attention due to the occurrence of an A-type magnetic

ordering at x ≃ 0.75 and its absence at lower sodium

contents x < 0.75 [1, 9]. In Ref. [10] the existence

of four stable phases in this Na concentration range

has been established. These phases display a similar

nearly ferromagnetic in-plane behavior above 100 K

but exhibit significantly different ground states. The

structure of one of these phases has been proposed
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recently using NMR/NQR data and confirmed by x-ray

Rietveld analysis [11, 12].

In NQR, nuclei with an electric quadrupole moment

have their nuclear spin energies split by the electric field

gradient (EFG) created by the electronic bonds in the

local environment. So this technique is very sensitive to

the nature of the bonding around the nucleus.

Samples. - The reproducible preparation of

single-phase samples with precise stoichiometries is not

straightforward in cobaltates. The high ionic mobility

of sodium and its chemical activity (for example, Na

ions easily react with molecules present in the ambient

atmosphere to form NaOH or sodium carbonates) make

the control of Na content even more difficult.

However, the methods for reproducible synthesis

of single-phase powder samples in the 0.67≤x≤0.75

sodium range have been reported in Ref. [10, 12]. To

protect the powders from the influence of water they

were packed into protecting materials. Several pro-

tecting materials have been used in our experiments:

the epoxy resin (Stycast 1266) and paraffin, which dis-

play distinct advantages and disadvantages. The Sty-

cast perfectly protects the powder from water influence,

however we have found that for samples packed in Sty-

cast, the NQR spectra displayed resonance lines ≈1.9

times broader than pure powder or samples packed in

paraffin (see Fig. 1). Thus, the paraffin packed pow-

der have been used for most further investigations. To

eliminate diffusion processes in the Na layers the sam-

ples were kept in liquid nitrogen.

Experimental details. - The NQR measurements

were carried out with a home-built coherent pulsed

NMR/NQR spectrometer. The NQR spectra of 59Co

were taken “point by point”with a π/2−τ−π radio fre-
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Fig.1.(Color online) Cobalt NQR lines of pure powder

and powder packed in Stycast and paraffin: solid (red)

line, dotted (black) line and dash-and-dot (blue) line,

respectively.

quency pulse sequence by varying the spectrometer fre-

quency. These sweeps were done with equal frequency

steps at 4.2 K. A Fourier mapping algorithm [15, 16]

have been used for constructing the detailed NQR spec-

tra.

NQR characterization of the phases.-We have

studied a series of samples with various sodium contents

(0.67 ≤ x ≤ 0.75). The NQR spectra of 59Co nuclei al-

lowed us to clearly differentiate four stable phases (see

Fig. 2) marked as H67, O71, H72 and H75. This nota-

tion is the same as used in Ref. [10]. The number in the

phase label is an approximate sodium content (x = 0.67,

0.71, 0.72 and 0.75, respectively) and the letter is a type

of unit cell (H-hexagonal, O-orthorhombic). The part

of the 59Co NQR spectra which correspond only to the

(±7/2 - ±5/2) transitions of 59Co nuclei [10, 12] are

shown in Fig. 2. It is clearly seen that every phase has

its own unique 59Co NQR spectrum. The H67 phase

has the simplest spectrum which consists of two lines

at ≈6.5 MHz and ≈ 7.5 MHz in this frequency range.

In the 5.5÷8.5 MHz range the O71 has 8 and H72 has

6 resonance peaks. The doublet of lines at ≈ 7.8 MHz

and the two resonance lines at ≈7.75 and ≈8.2 MHz

are characteristic features of the O71 and H72 phases,

respectively. These pairs of lines are labeled in Fig. 2

by dotted lines and by dash-dotted lines. The spectrum

of H75 phase differs considerably (Fig. 2) and it will be

discussed below.

Thus, the NQR spectrum is unique and character-

istic for each single phase. This allows easily to dis-

tinguish samples which are a mixture of two or more

phases. We show as an example in Fig. 2 the 59Co NQR

spectrum of the sample (labeled as Mix) with a sodium

content intermediate between O71 and H72 which con-

tains both signals from these two phases. So the NQR is

a sensitive method to distinguish single phase samples

from a mixture of phases. This finding becomes very

important as it will allow to characterize better freshly

synthesized samples and clarify the phase diagram of

the sodium cobaltates.

The spectral lines of H67, O71 and H72 phases are

rather narrow (linewidths ≈30-50 kHz), which points

out that the spread of EFG on the nuclear site posi-

tions is rather small. These phases have a finite number

of cobalt non-equivalent sites indicating the existence of

well defined local ordering in the Co and Na planes. The

structural model of the H67 phase (Na2/3CoO2 com-

pound) have been proposed recently in Ref. [11, 12].

One unit cell of this models contains four Co and three

Na non equivalent sites which have been detected by

NQR [11, 12] and by NMR [13, 14]. From the com-

parison of the NQR spectra it is obvious, that the H67

phase has the simplest structure in the 0.67 ≤ x ≤ 0.75

sodium concentration range. The structural organiza-

tion in the sodium planes is still an open question for

the O71 and H72 phases.

The existence of the antiferromagnetic (AF) order

with TN=22 K is the characteristic feature of the x ≃

0.75 compound. Such AF order was detected by µSR

in our samples [17], as well as by low field bulk suscep-

tibility measurements. Neutron scattering study of the

same phase established the A-type AF ordering (ferro-

magnetic in plane and AF between planes) [18, 19]. As

our studies have been carried out at 4.2 K, the H75

phase sample was magnetically ordered at this temper-

ature. Therefore the observed signal in the H75 phase

corresponds to the so-called zero field NMR (ZFNMR).

In this case, the nuclear energy levels are split by the

internal magnetic field. Thus, the observed spectrum

consists of seven lines, which correspond to the typical

NMR spectrum for nuclear spin 7/2 (one central line and

6 satellites), but only five of them are shown on Fig. 2.

We have failed in detecting the NQR spectrum of the

H75 phase above TN , due to significant shortening of

transverse relaxation time (T2).

During the experiments we have found that the

phase content of the samples packed in paraffin were

changed. It should be noted that the paraffin packed

samples between experiments were kept in liquid nitro-

gen. To perform the measurements we had to take out

samples from liquid nitrogen, warm them to the room

temperature and after that insert them in the probe of

our spectrometer. In Fig. 3 the evolution of phase con-

tent of one sample after few tens such thermal cyclings
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Fig.2.(Color online) NQR spectra for the four single phase samples studied in Ref. [10]. The difference in spectra is

obvious - each spectrum has at least one line which does not appear in the other phases as shown by the coloured arrows

and vertical lines (H67-solid (black) line, O71 - dotted line (red) and H72 - dash-dotted (blue) lines. The sample denoted

as Mix, with a Na composition in between the O71 and H72 phases, is the mixture of those phases as its NQR signal is

a weighted composition of the NQR signals of these two phases. H75 which is antiferromagnetically ordered at 4.2 K

displays a broad ZFNMR signal due to the internal magnetic field.

to room temperature is shown. This sample was initially

the H75 single-phase powder (upper spectrum in Fig. 3

- broad ZFNMR lines). However, the powder trans-

formed progressively into the H72 phase, and then the

lines of the O71 phase appeared. Most probably, during

repetitive fast changes of temperature, condensed water

molecules were able to interact with the powder at room

temperature.

Phase segregation.-Therefore the phase compo-

sition of the samples could change due to non-perfect

storage conditions at room temperature. To follow such

pocess a special experiment has been performed. A pow-

der sample which initially was a mixture of H72 and O71

phases has been kept in humid atmosphere during 3 days

at room temperature. The humidity was maintained

≃75 percent level in the closed half-filled bottle by sat-

urated solution of NaCl in distilled water. Therefore the

powder could easily interact with the water vapour in

air.

We have measured the 59Co NQR spectrum every

10 hours of exposure powder sample to humid air, and

results are shown in Fig. 4. There the NQR lines of the

known phases are marked by the vertical lines similar
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Fig.3.(Color online) Evolution of a paraffin packed sam-

ple from the H75 phase (a) to the H72 phase ((b), H72

phase lines are marked with dash-dotted (blue) lines)

and, finally, to the mixture of H72 and O71 phases ((c),

O71 phase lines are marked with dotted (red) lines).

For details see text.
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Fig.4.(Color online) NQR spectra of 59Co reflect the evolution of the phase content of a powder sample versus the time

of its exposure to humid air (see text for details). The sample was initially a mixture of O71 and H72 phases. The

phase composition evolves after 10 and 20 hours to O71 + unknown + H67 phases, while only the H67 phase remains

after 30 hours of treatment. This demonstrates that Na is progressively expelled from the NaxCoO2 sample.

to those in Fig. 2. The H72 phase had almost disap-

peared after the first 10 hours of treatment. At the same

time NQR lines in the spectrum corresponding to the

H67 phase appeared, as well as NQR lines of another

phase with intermediate sodium content between 0.71

and 0.67. This unknown and unstable phase persisted

up to the 20th hour of treatment. Also a significant

reduction of the O71 phase and clear increase of H67

phase content was observed in the 20th hours spectrum

(Fig. 2). After 30 hours of the sample exposure to humid

air the O71 and H72 phases had almost disappeared and

the only remaining phase was the H67 one with slight

background of impurity phases. No significant changes

in the 59Co NQR spectra were detected during further

treatment of the sample in humid air.

However, from our experience it is known that keep-

ing cobaltates powder in air for a long time leads to

the destruction of H67 phase too. We had monitored

such process observing the slow decrease of the H67

phase 59Co NQR signal intensity and the appearance

of a broad background signal from unknown phases -

see 70 hours spectrum in the Fig. 2. After such long

exposure of the sample to the humid air white powder,

most likely of sodium carbonates, appeared on the sam-

ple surface.

Thus, the powder samples evolve rapidly at room

temperature in contact with humid air. The evolution

process indicates a reduction of sodium content associ-

ated with a loss of Na ions. This statement is in a very

good agreement with former work by Shu et al. [9] done

at even higher Na content. These authors have inves-

tigated a single crystal Na0.88CoO2 and revealed a loss

of sodium ions from the surface which were fixed in a

white powder appearing on the crystal surface. Appar-

ently, the water and/or CO2 molecules react with Na

ions from surface with formation of sodium hydroxide

(NaOH) and sodium carbonates. So to avoid as much

as possible the change of phase composition of the pow-

der, we recommend to isolate cobaltates powders from

interaction with humid air and to try to block the diffu-

sion of Na ions. In some sense, the best way to store the

cobaltates powders is to keep them at low temperature

in hermetic ampoules with a small amount of helium

gas as a heat exchanger. This arrangement isolates the

powder from interaction with atmosphere and allows to

perform experiments at low temperature.

Conclusion.-Low temperature NQR is a very pow-

erful method to investigate the phase content of sodium

cobaltates. The four stable phases and an interme-

diate unstable one have been detected in the 0.67 ≤

x ≤ 0.75 sodium range. The spectral lines of phases
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without magnetic ordering are rather narrow and non-

overlapping, and the spectra could be described fully

by finite set of Co non-equivalent sites. All these fac-

tors point out the existence of well defined orders in

the Co and Na planes. These results are in good agree-

ment with previous investigations [10]. So far, only the

structure of the H67 phase has been determined [12],

confirmed by x-rays [11] and agrees with LDA compu-

tations [20]. The present NQR results in combination

with diffraction data should help to clarify the struc-

tures of the other phases. This should shed some light

on the origin of the Curie-Weiss susceptibility behavior

of studied phases and magnetic ordering of x ≃ 0.75

phase.
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